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We study the spectral statistics and dynamics of a random matrix model where matrix elements are taken
from power-law tailed distributions. Such distributions, labeled by a parameterm, converge on the Le´vy basin,
giving the matrix model the label ‘‘Le´vy matrix’’ @P. Cizeau and J. P. Bouchaud, Phys. Rev. E50, 1810
~1994!#. Such matrices are interesting because their properties go beyond the Gaussian universality class and
they model many physically relevant systems such as spin glasses with dipolar or Ruderman-Kittel-Kasuya-
Yosida interactions, electronic systems with power-law decaying interactions, and the spectral behavior at the
metal insulator transition. Regarding the density of states we extend previous work to reveal the sparse matrix
limit as m→0. Furthermore, we find for 232 Lévy matrices that geometrical level repulsion is not affected by
the distribution’s broadness. Nevertheless, essential singularities particular to Le´vy distributions for small
arguments break geometrical repulsion and make itm dependent. Level dynamics as a function of a symmetry
breaking parameter gives new insight into the phases found by Cizeau and Bouchaud~CB!. We map the phase
diagram drawn qualitatively by CB by using theD3 statistic. Finally we compute the conductance of each
phase by using the Thouless formula, and find that the mixed phase separating conducting and insulating
phases has a unique character.@S1063-651X~99!00910-1#

PACS number~s!: 02.50.2r, 05.45.Mt, 72.15.Rn
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I. INTRODUCTION

Random matrices~RM! have been investigated inten
sively in the past decade due to their wide range of appl
tions to different branches of physics such as the theory
mesoscopic fluctuations in disordered conductors@1#, spin
glass models@2#, light propagation in dense media@3#, and
quantum chaos@4# among others. Random matrices ha
been useful tools in bringing out universal behavior. It
indeed astonishing that the distributions of energy level sp
ings of heavy nuclei, the quantum spectra of a Sinai billia
and the spacing of the zeros of the Riemannz function all
obey very closely the Wigner surmise. These systems ar
the universality class of the Gaussian ensembles~GE!, which
include the orthogonal, unitary, and symplectic symmetr
As pointed out by Cizeau and Bouchaud@5# ~CB!, a kind of
central limit theorem for matrices is at work which drives
systems with the same underlying symmetries toward
common fixed point behavior. It is natural then to probe
limits of the basin of attraction of Gaussian ensembles. O
way to do this is by extending the matrix model to full m
trices with strongly fluctuating elements@5#. By strongly
fluctuating elements we mean random numbers from a l
tailed distribution whose variance and average can dive
This violates the premises of traditional random mat
theory @6# where the average and variance are finite.
named such matricesLévy matricesbecause the generaliza
tion is in the same spirit as the broader central limit theor
leading to the universality classes of Le´vy @7#.

*Author to whom correspondence should be adreessed. Elect
address: ernesto@pion.ivic.ve
PRE 601063-651X/99/60~4!/3580~9!/$15.00
-
of

c-
,

in

s.

a
e
e

g
e.

Recently CB studied Le´vy matrices, where matrix ele
ments are distributed according toP(Hi j ) with

P~Hi j ! ;
Hi j →`

H0
m

uHi j u11m
, ~1!

whereH0 is the typical order of magnitude ofHi j and the
parameterm ranges from 0 tò . The distribution of Eq.~1!
has finite variance form.2 while the variance diverges fo
0,m<2. m only takes positive values since the distributio
is not normalizable form,0 ~unless one redefines the rang
of Hi j ). The distribution above serves to probe the limits
the Gaussian universality for full matrices as one changesm.
Based on studies of the distribution of level spacings and
inverse participation ratios of the eigenfunctions, CB foun
phase diagram in them-energy space showing three region
for m.2 they report a regular Gaussian Orthogonal E
semble~GOE! phase~phase I!, i.e., delocalized states an
Gaussian orthogonal level spacing distribution. This ph
extends to the 1,m,2 interval for a limited range of ener
gies nearE50 ~which becomes the full band form>2).
Beyond this energy one enters a mixed phase~phase II!,
showing both localized and extended features, accordin
two different definitions of the inverse participation ratio@5#.
Phases I and II, in the 1,m,2 parameter range, appear
analogy to a mobility edge in disordered metallic syste
but, in the ‘‘mixed’’ phase, the wave functions presumab
decay algebraically. Between 0,m,1, the mixed phase per
sists up to an energyEc(m) beyond which a third, strictly
localized phase~inverse participation ratio finite and Poisso
spectra! appears. CB’s focus was set on the level spac
distribution as the main spectral signature. Nevertheless

nic
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PRE 60 3581SPECTRAL STATISTICS AND DYNAMICS OF LE´VY MATRICES
level spacing distribution only reveals very local spect
properties. For example, it is known that while an integra
system has a Poissonian distribution of level spacings itsD3
statistic shows rigidity beyond a certain energy scale@8#. A
more complete description of the Hamiltonian system
volves the studies of longer ranged statistics, such asD3, the
level number variance, and the two level correlation fun
tion. Also useful, in connection with the wave function stru
ture, is to derive the evolution of the spectra with an abstr
‘‘time’’ variable ~or perturbation! representing an externa
field or changes in the boundary conditions. The latter st
can reveal quantities such as the ‘‘conductance’’ of the s
tem @9,10# and universal features through the distribution
level curvatures and the level velocity autocorrelator@11#.
We will then explore the effects of strongly fluctuating m
trix elements on the universal features mentioned above

Lévy matrices are interesting beyond the mere general
tion of Gaussian matrices as they can model electronic
tems with power-law decaying~with distance! transition el-
ements@12#, and spin glasses with dipolar or Ruderma
Kittel-Kasuya-Yosida ~RKKY ! interactions @5#.
Furthermore, Le´vy matrices permit interpolation betwee
Gaussian matrices and sparse matrices, showing the c
sponding ‘‘percolation’’ transition@13#, where the matrix
disintegrates into separate uncorrelated blocks. Finally,
interesting issue worth noting is the existence of an interm
diate ‘‘critical phase,’’ between conducting~Gaussian
orthogonal/Gaussian unitary ensembles! and insulating
phases. Such a phase is of particular interest in connec
with the study of spectral distributions at criticality~metal
insulator transition!. Presumably in this critical regime th
wave function decays in an algebraic fashion and one wo
like to see the spectral signature of such a behavior@14#. The
intermediate phase of CB exists over an extended rang
values of the parameterm, making it much simpler to study
in principle.

The outline of the paper is as follows. In Sec. II we w
study the Le´vy matrix density of states by numerically d
agonalizing largeN3N matrices. Here we will discuss CB’
predictions regarding the sparse matrix limit close to
band center. We will also analyze an extension of the Le´vy
matrices to show, explicitly, the existence of structures~for
finite N) typical of sparse matrix ensembles@15#.

In Sec. III we study level statistics and dynamics usi
232 Lévy matrices of the form

H5HS1 iaHA . ~2!

The subscriptsSandA denote symmetric and antisymmetr
Lévy matrices, anda is a symmetry breaking parameter
fictitious time. For the 232 model we can solve analyticall
for small level spacing limit and show that for certain valu
of m universal geometrical repulsion is broken. We also fi
nontrivial decays for the large level curvature tails form
,1.

In Sec. IV we study level dynamics numerically, for larg
matrices, using the Hamiltonian of Eq.~2!. Taking advantage
of the sharp changes of theD3 statistic, we first map the
phase diagram drawn qualitatively by CB. TheD3 statistic
shows unique behavior in the mixed phase, in between lo
rithmic ~GOE! and linear~Poisson! behavior. Following that,
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we depict the level dynamical character of each of
phases, showing the reduction of sensibility to changes in
boundary conditions asm decreases~disorder increases!. We
further characterize the mentioned phases by determining
scaling, with matrix size, of the ‘‘conductance,’’ as define
through level curvature. We end with a discussion and c
clusions.

II. DENSITY OF STATES AND SPARSE MATRIX LIMIT

Wigner has shown that as long as the average and v
ance of the matrix elements are finite, the semicircle law
the density of states is approached asN→` @16#. With the
Lévy matrix model one explicitly violates the above cond
tions as matrix elements can have diverging variance
mean. CB have already shown, analytically, that the den
of states~DOS! for Lévy matrices assumes the new form

r~z!5Lm
C(z),b(z)~z!, ~3!

whereLm
C,b is a centered Le´vy distribution @7# andC,b are

self-consistently determined functions@5#. Such density has
an infinite range forz in contrast to the well known Wigne
semicircle. Here we are particularly interested in the beh
ior of Eq. ~3! when m→0. CB have argued that, in such
limit, the sparse matrix limit should be achieved. The co
clusion is based on the fact that there is a hierarchy of ma
element sizes, the largest of which dominate the spectr
Very large elements with a finite probability dominate ov
small ones~which behave effectively as zero! at each column
or row defining a sparse matrix. Extensive studies on spa
matrices by Evangelou@15# have shown that the DOS differ
from the semicircle by developing ad-function-like peak
with a 1/uEu energy dependence at the center of the band~see
also @17#!. Further singularities show up symmetrical
aroundE50.

Although Eq.~3! predicts a peaked structure in the cen
of the band asm→0 it does not bear the correct energ
dependence for the sparse limit. In fact, asm→01, the cen-
tral maximum has the forma(m)1b(m)E2 where a(m
→0) diverges. The latter behavior is confirmed by our n
merics, showing no sign of the characteristic features of
sparse matrix DOS approaching fromm501.

In order to see the sparse matrix limit we have generali
Lévy matrices to the rangem,0 where random number
occur in the interval@21,1# ~for normalizability!. In a sense,
the distribution in this range has long tails towards zero
stead of infinity. Although this case conforms to the Wign
theorem, its finite size effects reveal, close tom50, the un-
derlying sparse matrix limit.

We generated more than 2000 matrices of up to 10
31000 and determined the corresponding DOS. Great c
was taken of the numerical precision of the code so t
small elements were not arbitrarily set to zero. We stud
the DOS for various matrix sizes to check for the asympto
behavior. In Fig. 1 we show a phase diagram for the DOS
a function of the parameterm, for both negative and positive
values. In the positivem regime, we confirm CB’s results; a
depicted in the figure, the DOS approaches the semicircle
m.2 while for 0,m,2 it reaches a new stable form as
function of the matrix sizeN. For m,0 ~tails towards zero!,
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FIG. 1. Phase diagram for the density of stat
as a function of the parameterm. On the right-
hand side we show the Gaussian phase conve
ing to the semicircle and CB’s new limit DOS fo
0,m,2. On the left, i.e.,m,0, the limit DOS is
always the semicircle but, for finite size matrice
one observes a sharp singularity developing w
a 1/uEu energy dependence characteristic
sparse matrix ensembles. Additional subsidia
anomalies begin to develop on both sides of t
DOS maximum.
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if one fixes the matrix size, there are two regimes as a fu
tion of m; for umu sufficiently large the DOS follows the
semicircle while form→02, r(E) crosses over to a new
form and starts to develop a sharp singularity of the fo
1/uEu when uEu→0. Additional singularities develop aroun
uEu51 as expected for sparse matrices. Obviously, for
m,0 the DOS renormalizes towards the semicircle l
whenN→`. Therefore, the sparse matrix behavior is only
finite size effectexcept form50, where the sparse matri
limit is asymptotic.

In order to see the asymptotic form forr(E,m50), one
has to scale out theN dependence. As the matrix sizeN
increases, one needs to lowerumu in order to preserve the
shape of the density. Using the nontrivial scaling varia
m/Ng with g50.8360.02, we obtain an invariant form fo
the DOS reflecting the limit behavior atm50 ~see Fig. 2!.
The scale factor also tells us how the semicircle is
proached asN increases. On them.0 side, small matrices
never exhibit sparse-matrix-like behavior, indicating that
analytical form of the DOS changes discontinuously atm
50. We have not found a simple explanation for the value
the exponentg.

III. LEVEL SPACING AND CURVATURES
IN THE 2 32 MODEL

The study of 232 model matrices is useful in obtainin
approximate features of the local spectral behavior of la
matrices. A prominent example is the Wigner surmise; wh
only rigorous for 232 matrices, it reproduces remarkab
well largeN features~for Gaussian disorder!. The small level
spacing behavior is expected to be well reproduced by
N52 theory because a very close encounter of two level
weakly affected by the rest. By the same argument, the
of the level curvature distribution should also be well rep
duced as close encounters involve the largest curvatures
previous argument is especially clear within the level d
namical picture, where levels interact via an inverse squ
potential of their separation@18#.

Regarding the 232 model when an external flux is ap
plied; up to the correlation fluxfc ~defined below! levels
should evolve parabolically without crossing other leve
Beyond such a flux, level collisions typically start@19#, and
the N52 model should cease to be valid. The shortcomin
of the 232 model for larger spacing~smaller curvature! can
be in part circumvented by adding a thermal reservoir rep
c-
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senting the other levels. We do not pursue the latter appro
but refer the reader to Ref.@20# where it is discussed in
detail.

We will be especially interested in the universal prope
of geometrical repulsion. Geometrical means that repulsio
is due to the Jacobian which relates volume elements in
matrix and eigenvalue spaces. Such behavior is obviou
well reproduced by the 232 model. We will find that in
certain ranges of the parameterm such universality is bro-
ken. Nevertheless, we emphasize that in this section we
the full Lévy distributionsinstead of only their characteristi
tails as in the preceding section. Such a choice is centra
the geometrical breaking phenomenon because it depend
essential singularities of the Le´vy distribution for small ar-
guments.

We study the level dynamics in response to a perturba
by using the model of Eq.~2!. Dupuis and Montambaux@21#
have argued thata, in this model, plays a role similar to th
phase in an Aharonov-Bohm ring, the mapping being

a5ApEc

ND
f, ~4!

where f is defined byC(2p)5C(0)exp(if) acting as a
change in the ‘‘boundary conditions’’ to which the respon
in the energy levels can be measured.Ec is the Thouless

FIG. 2. Scaling ofr(E) for m,0 in order to bring about the
sparse matrix limit asm→02. As N increasesm is reduced to
preserve the shape of the density~inset!. The sparse matrix limit is
achieved only in them50 limit.
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PRE 60 3583SPECTRAL STATISTICS AND DYNAMICS OF LE´VY MATRICES
correlation energy andD is the mean level spacing. Then th
correlation flux isfc5AND/(pEc) settinga51 and attain-
ing the unitary limit.

First, we will look at the small level spacings in the cas
a50 or orthogonal anda51 or unitary limits. Consider the
matrix

S x11x2 x31 iax4

x32 iax4 x12x2 D , ~5!

wherexi are real random numbers taken from a symme
~or symmetrized! Lévy distributionLm,b50. The parameterm
is the same as that defined in Eq.~1! describing the distribu-
tion tails.b is an asymmetry parameter which is set to ze
throughout. We have chosen to work directly with a Le´vy
stable function instead of using CB’s function with powe
law tails. This choice has important consequences regar
the local spectral behavior because of the peculiar dep
dence ofLm,1,b50(x) for small x values. We show below
that the behavior of the large value tails of the matrix e
ments cannot affect the universality of the small level sp
ing behavior. For further details on Le´vy distributions, we
refer the reader to an excellent review by Bouchaud
Georges@7#.

The spectrum of the Hamiltonian above is given by

E65x16Ax2
21x3

21a2x4
2 ~6!

and the energy spacingE12E25s(a)52Ax2
21x3

21a2x4
2.

The distribution function ofs is given by

Pa~s!5E d~s22Ax2
21x3

21a2x4
2!)

i 51

4

P~xi !dxi . ~7!

As can be seen from the expressions above, small valuess
will result from small simultaneous values ofxi .

1<m<2 range

Small xi yield small s values, so we use the followin
expansion:

Lm,0~x→0!5
1

pm (
k50

`

~21!k
x2k

2k!
GS 2k11

m D , ~8!

valid for smallx @7#. The radius of convergence of Eq.~8! is
infinite for 1,m,2. Performing the integrals in Eq.~7! we
arrived at the expressions, fors→0,

Pa~s,1,m,2!55
G~1/m!3

128p2m3
s2 if a51,

G~1/m!2

8pm2
s if a50.

~9!

We thus confirm the universal level spacing behavior giv
by the first power of the spacings, in the orthogonal case
and a second power in the unitary case.The level repulsion is
geometrical. The borderline casem51, i.e., the Cauchy dis
tribution for matrix elements, can be computed exactly ob
ing the expression
s

c

o

ng
n-

-
-

d

f

n

-

Pa~s,m51!5ReF16s tanh21~A41s2/2!

A41s2p2~s218!
G . ~10!

The expansion for small spacings is (ln 42ln s)s/p2. There-
fore, for them51 case, repulsion is nontrivial. Such beha
ior reflects on the curvature distribution.

0<µ<1 range

In this range the Le´vy functions are generally integra
expressions and we do not know of simple asymptotic
pressions for small arguments. Therefore, we have chose
solve for particularly simple cases which includem51/2 and
m51/3 within the mixed phase and outside the range of
lidity of the expansion of Eq.~8!. The Lévy distribution for
m51/2 is simply

L1/2,0~x!5
C

A2px3/2
exp~2C2/2x!, ~11!

whereC is a normalization constant. Using Eq.~11! we can
obtain, after numerical integration, the distribution depict
in Fig. 3. The behavior of small spacings is obviously no
linear. The universal geometrical repulsion is thus broken
the orthogonal and unitary cases when 0,m,1.

We can also expand the corresponding integral for sm
energy spacings obtaining the expression, fors→0,

Pa~s,m51/2!5
16

3

~21a2/3!3/4exp@2~21a2/3!3/2/s#

s3/2p
.

~12!

Note that the small spacing behavior~the power ofs) is not
sensitive to the change of symmetry~given bya). Further-
more, Eq.~12! shows the same behavior for small argume
as Eq.~11!, with m51/2 andC5A2(21a2/3)3/4. This says
that the initial Lévy distribution gets its parameterC renor-
malized under the variable combinationAx2

21x3
21x4

2, but
the form of the distribution remains unchanged. Using
hypothesis that in the range 0,m,1 the form of the Le´vy
distribution governs the small level spacing behavior,
conjecture that the function ofm is of the form, fors→0,

FIG. 3. Level spacing distribution for the 232 model andm
51/2. The full distribution~solid line! was obtained numerically
The analytic expression for thes→0 limit ~dashed line! is shown to
fit the numerical solution in the inset. Geometrical repulsion is th
broken.
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3584 PRE 60MARIELA ARAUJO, ERNESTO MEDINA, AND EDUARDO APONTE
Pa~s,0,m,1!5
f ~m,a!

s(22m)/2(12m)
expS 2

g~m,a!

sm/(12m)D ,

~13!

where the general forms off andg have not been determined
We have checked this general conjecture for the valuem
51/3; L1/3(x)5(u/p)sin(p/3)K1/3(u/x1/2)/x3/2 whereK1/3 is
the modified Bessel function of order 1/3 andu is a constant.
In the limit m→0 Eq. ~13! implies P(s)→1/s and level re-
pulsion turns to a nontrivial level clustering with a dive
gence at zero spacing. Equation~13! is undetermined form
51. It is apparent that, at least within the 232 matrix
model, the repulsionceases to be geometricaland a newm
dependent level statistical phase takes over. Such behav
due to the essential singularity ofLm,1(x) for small argu-
ments. If one uses a reasonably behavedP(x) at small x
preserving power-law tails~appropriately normalized!, geo-
metrical repulsion is the rule. From this analysis, it is app
ent that the tails of the distribution do not induce any spe
local spectral behavior. Notwithstanding, the long rang
spectral rigidity is influenced by the long tails, giving a ne
D3 signature discussed in Sec. IV. We will discuss in the l
section similar nongeometrical repulsion in the context of
Dyson plasma picture in a weak power-law potential.

Level curvatures

The tails of the probability distribution of level curvature
have been shown to be universal@22#. Therefore, changes in
their behavior should signal changes in the universality cla
The universality of curvature tails is known to be close
related to that of small level spacing distribution. This
intuitive by the argument that largest curvatures occur on
closest encounters between energy levels.

For the 232 model the level curvature is defined as

k~a![
]2s~a!

]a2
5S 2x4

2

s~a!
2

8a2x4
4

s3~a!
D , ~14!

wheres(a) is the level spacing. The distribution of curva
tures is then computed by using an equation analogous to
~7!. For large curvatures it is expected that the many le
interaction becomes negligible and the 232 approximation
is very good@23#. Moreover, as we will see, in the limitm
→0 repulsion is very weak compared to the large energ
involved, so the 232 matrix is again justified.

For m52 the Lévy distribution corresponds to a Gaus
ian. This case was studied extensively by Kamenev
Braun @19#. For a50 the largek behavior corresponds t
Pa(k);k23. On the other hand, the behavior changes wh
a51 ~unitary case! wherePa(k);c exp(28k2/2). Such de-
viation from universal behavior~as k24) is related to the
breakdown of the 232 model asa→1. For further discus-
sion on this point see Ref.@19#. k23 behavior is also ob-
tained if one uses a distribution with a well behaved bulk~no
essential singularities for small matrix elements! and a tail
decaying as 1/xm11 with m.1. Gaussian universality in th
regime 1,m<2 for the level spacing, found previously, als
suggests a well behaved curvature distribution in this ran

In the range 0,m<1 we have studied three cases, i.
m51/3, 1/2, 1 as with the level spacing distribution. Usin
r is

-
l

d

t
e

s.

e

q.
l

s

d

n

e.
,

a relation analogous to Eq.~7! we were only able to obtain
the level curvature tail behavior, in the limita→0. Fortu-
nately, this is the limit where the 232 model emulates wel
the largeN results @19# relevant to physical systems. Ou
results are summarized as follows:

P~k!;H 1/k5/3 for m51/3,

1/k5/4 for m51/2,

1/k3/2 for m51.

~15!

As with the level spacing, the power of the curvature t
varies continuously withm in the mixed phase in a nontrivia
fashion. The first two results can be derived analytically e
panding for largek values. On the other hand, form51 we
obtained the joint probability distribution for (k,s),

P~k,s!5ReF 32s3/2 tanh21~A41s2/2!

p2AkA41s2~41ks!~81s2!
G . ~16!

We were not able to obtain a closed expression integra
overs. Nevertheless, if one takes thes→0 first and then the
limit k→` we obtain the result predicted by Eq.~15!. An
alternative procedure is to obtain the distribution by intr
ducing Cauchy random variables into Eq.~14! and sampling
the k values. This procedure showed a clear asymptotic
pendence as 1/k3/2 in consistency with the previous order o
limits.

As pointed out in the beginning of this section, if we u
an only tails version of the Le´vy distributions, geometrica
repulsion and curvature tail universality are preserved.
have tested this explicitly with the distributionm/(x
11)m11, which has regular behavior at small values for
m.

IV. LEVEL STATISTICS AND DYNAMICS
OF LARGE MATRICES

We will now concentrate on the level statistics and d
namics of large matrices whose matrix elements come fr
Eq. ~1!. CB probed the level spacing distribution, the DO
and the wave function, the latter through two definitions
the inverse participation ratio. Useful information can be
trieved from level dynamics regarding the ‘‘conductance’’
the matrix model. This is possible due to the very gene
definition of conductance in terms of level sensibility
changes in the boundary conditions@24#. Such sensibility is
quantified through the computation of level curvatures w
respect to the parametera in Eq. ~4!. Furthermore, we will
analyze theD3 statistic which is suited to the study of inho
mogeneous spectra, probing longer ranged behavior
level spacing distributions.

In order to corroborate the phase boundaries propose
CB we have calculated theD3 statistic which gives very
sharp changes in behavior as a function of the energy inte
around the band center. TheD3 statistic is computed using
the following expression:

D3~L !5K 1

L
min
A,B

E
2L

L

@N~e!2Ae2B#2deL , ~17!
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FIG. 4. Phase boundaries using theD3 statistic between the
Gaussian, mixed, and Poisson phases as a function of the en
~dimensionless! and m. For 1,m,2, the inset shows the rapi
crossover between logarithmic~Gaussian! and quadratic~mixed!
behavior. For 0,m,1, the inset shows the crossover between q
dratic ~mixed! and linear ~Poisson! behavior. Fits are shown to
logarithmic and quadratic behaviors. The mapping of the ph
boundaries as a function ofm is possible due to the sharp chang
of the D3 statistic.
ting
whereN(E) is the number of levels with energies between
andE. The energy interval varies between@2L,L#. It is well
known that Gaussian statistics imply a logarithmicD3 func-
tion for both orthogonal and unitary ensembles. On the ot
hand, Poisson statistics imply a linear behavior. Figure
~insets! shows both the transition from Gaussian to mix
phase statistics, and from the latter to Poisson. We find
D3 behaves quadratically with energy for the mixed pha
giving it a characteristic signature. Departure from logari
mic behavior indicates a relaxation of the long ranged sp
tral rigidity of the Gaussian ensembles. The changes inD3

from one range to another are so sharp that one can use
map the range boundaries as a function ofm. Figure 4 shows
the approximate phase diagram obtained from this exerc
confirming the qualitative behavior proposed by CB.

We now study the level dynamics using the Hamiltoni
of Eq. ~2! and matrix element distribution given by Eq.~1!.
We have diagonalized matrices of up to 100031000 and
drawn the eigenvalues as a function of the abstract time
rametera. Figure 5 shows typical ‘‘spaghetti’’ for each o
the phases found by CB. The Gaussian of the spectrum
seen to expand due to increased repulsion of the energy
els @as we go to the Gaussian unitary ensemble~GUE! limit #
as a function ofa. Sufficiently large values ofa eventually
give all eigenvalues a linear dependence@20#.

As one goes from the Gaussian phase~center of band!
into the mixed phase@Fig. 5~a!#, one sees ‘‘solitons’’ devel-
oping at the edge of the spectrum. The soliton, propaga
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FIG. 5. In the figure we show the character
level dynamics~energy versusa) in each of the
CB phases as discussed in the main text.~a! The
left shows the mixed and Gaussian energy ran
labeledA and B, respectively. On the right we
show the corresponding level spacing distrib
tions. ~b! The left shows the mixed and Poisso
energy ranges. On the right, the exponential le
spacing distribution for the Poisson regime. Th
energyE is dimensionless.
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without change in form in the abstract time parameter, c
sists of a set of levels with persistent slopes~known as per-
sistent level crossing!. Such a behavior is not seen in regul
random matrix ensembles. Nevertheless, simple matrix m
els have been suggested in the past@18# that show similar
behavior. This persistent behavior is reminiscent, as poin
out by Nakamura@18#, of scarred states occurring very com
monly in the spectra of a quantum stadium billiard@25#.
Scarred states are due to unstable periodic orbits becaus
for example, bouncing between plane parallel walls of
stadium. In a similar fashion, the persistent level velocities
the mixed phase occur due to large off diagonal eleme
connecting two states, producing a periodic ‘‘bouncing
This agrees with CB reasoning that a quasieigenvecto
these energies has the form 1/A2(u i &1u j &) because of a very
large matrix elementHi j .

Regarding the level spacing distribution@see Fig. 5~a!# for
1,m,2 we see geometrical repulsion, i.e.,s ands2 depen-
dences for smalls. Nevertheless, the large spacing behav
varies with energy from a Gaussian decay~as in GOE!, to
closer to an exponential decay in CB’s mixed phase. T
mixed phase retains geometrical level repulsion, as show
Fig. 5~a!, but the distribution departs from a finite value
spacing zero. This could indicate that we have a mixture
Gaussian- and Poisson-like behavior, i.e., a set of local
states in coexistence with extended states. Mixture of sta
tics has been observed for critical disorder in tight bind
random matrices@26# ~see also Ref.@14#!.

Reducing the parameterm below 1 @Fig. 5~b!#, we enter
the new regime of CB’s diagram where, depending on
ergy, one is within the mixed phase~center of the band! or in
the strictly localized regime~edges of the band!. The mixed
phase~center of the band! in Fig. 5~b! is very compressed
nevertheless it shows the same character of the edge o
band in Fig. 5~a!. In the Poisson phase, the spectrum litera
explodes in solitonic or persistent level behavior. As can
seen in Fig. 5~b!, the spectrum at the edge of the band
made from horizontal levels directly reflecting large e
ments from the symmetric part of the Hamiltonian. The l
early increasing levels reflect large dominant elements fr
the antisymmetric contribution. Horizontal levels show t
insensibility to changes in the boundary conditions (a) and
thus localization. In the mixed phase there is a remnant
vature, seen in the border of the band in Fig. 5~a!, possibly
signaling what CB identified as algebraic decay of the wa
functions. Such features are not seen in the center of the b
in Fig. 5~b! ~same phase! because of the scales.

Finally, for 0,m,1 higher in energy, the spacing distr
bution becomes Poisson as seen in the right-hand pan
Fig. 5~b!. With the exception of the very center of the ban
all levels are either horizontal or lines of a fixed slope@Fig.
5~b!#. The matrix can be thought to break up into weak
coupled 232 blocks. Different levels only ‘‘see’’ each othe
on very close encounters~barely visible in the figure!, at
which point they avoid crossing.

As mentioned in the Introduction, there is a very gene
definition of ‘‘conductance’’ of a physical system based
the sensitivity of a block of material to changes in the bou
ary conditions. In our case, boundary conditions are chan
by the parametera. The Thouless definition for the conduc
tance is abstract enough to encompass any model where
-
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can produce the spectrum and the effects of a coupled e
nal parameter. In our case, the spectrum is inhomogene
so the Thouless conductance must be computed within
stricted energy ranges. The Thouless formula@27# for the
conductance used here is

G5
1

D K S d2E

df2D
f50

2 L 1/2

, ~18!

whereD is the average level spacing computed within ea
phase. Different conduction regimes are usually dist
guished by their scaling properties with system size. Pre
ous studies with banded random matrices@28#, where a scal-
ing parameter associated with ‘‘length’’ can be defined, ha
shown both the metallic and localized regimes. In the la
case, banded matrices show Ohmic conductance behavi
one-dimensional systems scaling as 1/L and localized behav-
ior scaling as exp(2L), where L is identified with N the
matrix size.

In our case there is no clear length parameter and
system size is governed by the matrix dimensionN. The
metallic regime should show an increasing conductance w
matrix size going asAN. Such a behavior is expected in th
Gaussian regime, as found analytically by Simons and A
shuler@11,29# and shown numerically by Sano@30# for the
quantum kicked rotator in the chaotic regime. We take
latter N dependence as reference to contrast with the beh
ior of the mixed phase.

Using the spectra as a function ofa we have computed
the conductance according to Eq.~18!, averaged within each
of the phases described in Fig. 4. The scaled conductanc
a function of matrix size is depicted in Fig. 6. Within th
Gaussian regime we see thatG/AN is relatively constant,
confirming the theoretical result. The magnitude of the co
ductance also gets reduced as disorder increases (m de-
creases! as expected.

For the mixed phase we see an appreciable decreas
G/AN as N increases. Nevertheless, the decrease is slo

FIG. 6. The conductance scaled byAN as computed from Eq.
~18! for each of the three phases. While conductance in the Ga
ian region grows asAN, in the mixed phase the conductance has
additional, presumably logarithmic decrease, indicating very w
localization. The averages indicated in Eq.~18! are performed
within the corresponding energy ranges.
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than algebraic, as can be seen from Fig. 6. The mixed ph
then has an additional weakly localized contribution as co
pared to the Gaussian phase. Such behavior is in accord
the algebraic decay of the wave functions where electr
have no length scale for localization. Finally, for the Poiss
phase we found extremely small conductances, zero wi
the numerical error. As expected, levels do not respond ta
in this (m,E) range.

V. DISCUSSION AND CONCLUSIONS

We have presented a spectral study of Le´vy matrices
which significantly extends results found by Cizeau a
Bouchaud@5#. We have shown, by generalizing the Le´vy
matrix model tom,0, how the sparse matrix limit is reache
asm→0. m50 is an unstable fixed point in the renormaliz
tion group sense,m502 leading to the Wigner semicircle
fixed point andm501 to a new CB fixed point as the matri
sizeN increases.

We solved 232 matrix models analytically to chec
whether geometrical repulsion, a trademark of the Gaus
ensembles, is broken in Le´vy matrices. The 232 model is
justified especially form,1 where the close encounter o
two levels is weakly affected by the rest of the spectrum.
found that, unexpectedly, the long tails of the distributi
~for m.0) do not affect geometrical repulsion. Neverthele
essential singularities ofLm,1(x→0) break geometrical re
pulsion, making itm dependent, i.e., nonuniversal. A stron
nonlinear repulsion remains for which we have found a g
eral form. Only for m50 is repulsion replaced by stron
level clustering asP(s→0);1/s.

Our study of largeN3N Lévy matrices focused on bot
spectral statistics and dynamics. We found that theD3 statis-
tic exhibits very sharp crossovers between the surm
phases of CB. We used this characteristic to map the ph
boundaries as a function ofm and energy as discussed
Sec. IV. TheD3 statistic, measuring longer ranged statist
than the level spacing, has a new quadratic dependenc
the mixed phase. Notwithstanding, level repulsion is g
metrical except for the fact that it departs from a finite va
at spacing zero. Regarding level dynamics, we have obta
a clear picture of how the system goes from the eigens
extended Gaussian phase to the localized Poisson phase
m.2 the whole band obeys 1/k3 curvature tails as expected
tt.
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Decreasingm below 2 begins to develop solitoniclike struc
tures at the band edges. The interpretation of this is
clusters of states become localized, and we have peri
bouncing between such states in the same way scars ap
on the stadium billiard. Belowm51 solitonic structures
dominate the spectrum with the exception of the center of
band. Away from the center, in this regime, one starts to
levels completely insensible to the fictitious time parame
a. The only curvature they exhibit is on very short rang
encounters with a radiating level.

Motivated by the work of Casatiet al. @28# we studied the
scaling properties of the ‘‘conductance’’ as a function
matrix size. While the Gaussian regime exhibits a cond
tance proportional toAN as expected from theory, we foun
that the mixed phase has an additional, slower than algeb
decrease. CB had found power-law decaying eigenfuncti
indicating a special kind of broad metal insulator transiti
region.

Finally, we note an interesting connection to a rece
model involving Dyson’s plasma picture of eigenvalues co
fined by a potential. Canali@31# proposed the latter potentia
to be extremely weak, considering eitherV(e)5A/2ueun with
0,n,1 or A/2 ln2ueu, both ase→`. Such a potential pre-
sumably produces critical level statistics, as in the metal
sulator transition, for a certain valueAc . Curiously he finds
a peaked DOS with a 1/ueu12n near the band center. Suc
behavior is reminiscent of the findings of CB. Furthermo
for the power-law potential thegeometrical repulsion is bro-
kenas in our 232 model for Lévy matrices.

It is intuitive that a sufficiently weak confinement pote
tial could yield a very broad band of eigenvalues as we fi
for the mixed phase. Such a phase is also some kind of w
critical region separating a metallic and a localized phase
Canali’s model attempts to describe. A possible relation
tween the Le´vy matrix model and Canali’s weakly confine
plasma would be illuminating, especially in connection w
the level statistics at the Anderson transition.
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